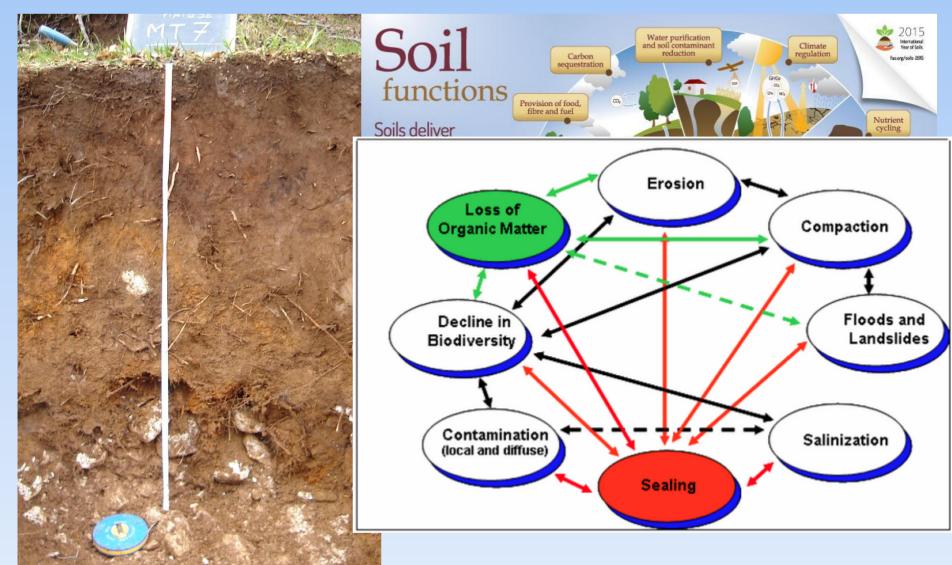


The Earthserver Datacube Federation: A Single Pool of Pixels

Organization/Company: Rasdaman GmbH


Thursday 14 October, 17:30-19:00

# LANDSUPPORT: Towards a Free Integrated Land Decision Support System

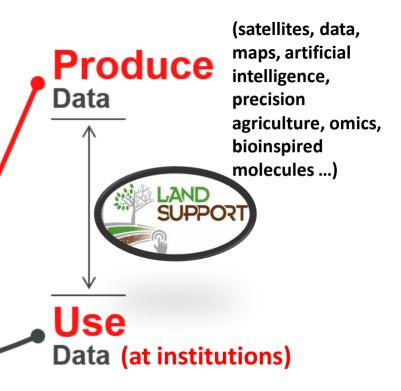
## Fabio Terribile

- CRISP Research Centre, University of Naples "Federico II", Portici (NA), Italy,
- Department of Agriculture, University of Naples "Federico II", Portici (NA), Italy (fabio.terribile@unina.it)

# ... few words about myself?



## Producing data is extremely important!


... nowadays we have to face huge agricultural and environmental challenges and very high policy expectation (e.g. SDGs), ...in this situation the only production of data (even when including the most advanced data visualization) is simply not enough!



(satellites, data, maps, artificial intelligence, precision agriculture, omics, bioinspired molecules ...)

## Producing data is extremely important!

... nowadays we have to face huge agricultural and environmental challenges and very high policy expectation (e.g. SDGs), ...in this situation the only production of data (even when including the most advanced data visualization) is simply not enough!



## But why things are complex?

| Some important EU regulations agricultural/forestry and | concerning the management of<br>d environmental issues. |
|---------------------------------------------------------|---------------------------------------------------------|
|                                                         | D 1                                                     |

| agricultural forestry an              |                        |                |
|---------------------------------------|------------------------|----------------|
| EU regulation/directive               | Required answer        |                |
|                                       |                        |                |
|                                       | Time                   | Space          |
| Rif. ACP System of conditionality     | Dynamic                | Varying in the |
| Reg. (EC) 1782/031783/05              |                        | landscape      |
| Directive 91/676/EC Nitrates          | Dynamic                | Varying in the |
| Directive 60/00 EC Water              |                        | landscape      |
| Framework                             |                        | Milaseupe      |
| COM 2006/231. Soil Thematic           | Static/ <b>Dynamic</b> | Varying in the |
| Strategy and NAP for Italy            |                        | landscape      |
| Directive 80/68/EC <b>Groundwater</b> | Dynamic                | Varying in the |
| against pollution                     |                        | landscape      |
| Directive 86/276/EC Sewage sludge     | Static/Dynamic         | Varying in the |
|                                       |                        | landscape      |
| Directive 75/268/EC; Reg. (EC)        | Static                 | Varying in the |
| 1257/99; art.19 reg.(EC) 1698/05 art. |                        | landscape      |
| 50.3(a) Disadvantaged areas           |                        | landscape      |
| Reg.(ÉC) 510/06 Reg.(EC) 1898/06      | Static                 | Varying in the |
| Designations of origin                |                        | landscape      |
| Reg. (EC) 1698/05 Reg. (EC) 1974/06   | Dynamic                | Varying in the |
| Rural development in forestland       | v                      | landscape      |
| •                                     |                        | landscape      |



## In addition it is required to

- Have answers across <u>different scales</u> (action is often local!)
- Accounting for the <u>multifunctional role</u> of soil and landscape
- Data quantity/quality varying in space and time...

..then if life is complex, we require engines to address such

complexity...



and NOT to oversimplify complexity!

...e.g. the only use of <u>visualization tools - such as standard web-</u> <u>GIS - are simply not enough</u> to address landscape management and planning complexity!



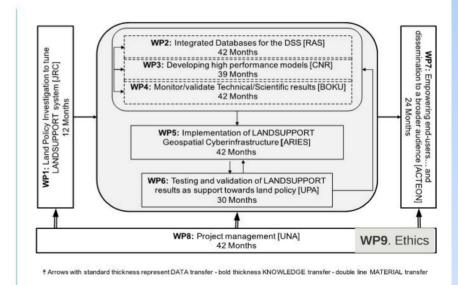
COLLABORATIONS

y f

# www.landsupport.eu

S-DSS PLATFORM

## **LANDSUPPORT**


Development of Integrated Web-**Based Land Decision Support** System aiming towards the Implementation of Policies for Agriculture and Environment



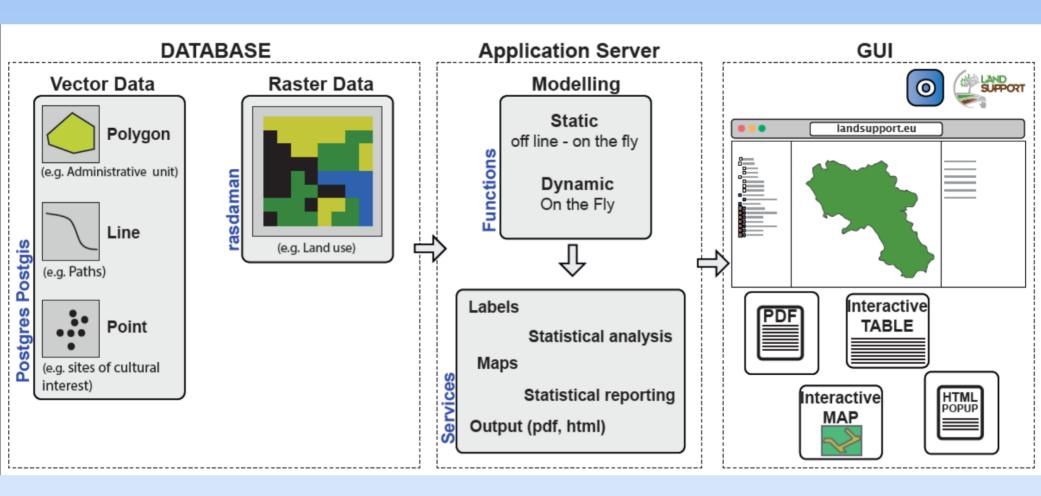


## May 2018 - April 2022

- 19 partners
- >10 countries
- 3.5 years
- €7 million budget
- >60 people
- 1200 person months
- >€300k travel!



The objective of LANDSUPPORT is the construction of a web-based smart geoSpatial Decision Support System (S-DSS), which shall provide a powerful set of tools devoted to


- (i) support sustainable agriculture/forestry,
- (ii) support sustainable spatial planning
- (iii) contribute to implementation, impact and delivery of about 20 European land policies and SDG 15.3 "achieving a land degradation-neutral world".

LANDSUPPORT will be applied at **four geographic scales:** 

- ✓ EU;
- ✓ 3 Nations (Italy, Hungary, Austria);
- ✓ 2 European Regions in IT and HU;
- ✓ 4 pilot sites in AU, IT, HU, Tunisia;

#### List of participants

| #                          | Participant Legal Name                                                                                                                               | Country                                          |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1                          | UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II.                                                                                                        | Italy                                            |
| 2                          | ARIESPACE SRL                                                                                                                                        | Italy                                            |
| 3                          | BARCELONA SUPERCOMPUTING CENTER- CENTRO NACIONAL DE SUPERCOMPUTACION                                                                                 | Spain                                            |
| 4                          | UNIVERSITAET FUER BODENKULTUR WIEN                                                                                                                   | Austria                                          |
| 5                          | CONSIGLIO NAZIONALE DELLE FICEPO-E                                                                                                                   | Italy                                            |
| 6                          | Crops for the Future Research Centre                                                                                                                 | Malaysia                                         |
| 7                          | INTERNATIONAL CENTRE FOR AGRICULTURAL RESEARCH IN THE DRY AREAS                                                                                      | Lebanon                                          |
| 8                          | Institute of Advanced Studies                                                                                                                        | Hungary                                          |
| 9                          | Istituto Superiore per la Protezione e la Ricerca Ambientale                                                                                         | Italy                                            |
| 10                         | PASDAWAN GMBH                                                                                                                                        |                                                  |
|                            | TRO/WHY CITED                                                                                                                                        | Germany                                          |
|                            | JPC-JOINT RESEARCH CENTRE: EUROPEAN COMMISSION                                                                                                       | Germany                                          |
|                            |                                                                                                                                                      | -                                                |
| 11                         | JPC-JOINT RESEARCH CENTRE: EUROPEAN COMMISSION                                                                                                       | Belgium                                          |
| 11                         | JPC-JOINT RESEARCH CENTRE: EUROPEAN COMMISSION REGIONE CAMPANIA                                                                                      | Belgium                                          |
| 11<br>12<br>13             | JPC-JOINT RESEARCH CENTRE: EUPOPEAN COMMISSION  PEGIONE CAMPANIA  PANNON EGYETEM                                                                     | Belgium<br>Italy<br>Hungary                      |
| 11<br>12<br>13<br>14       | JPC-JOINT RESEARCH CENTRE: EUROPEAN COMMISSION  REGIONE CAMPANIA  PANNON EGYETEM  UNIVERSITA DEGLI STUDI DI MILANO                                   | Belgium  Italy  Hungary  Italy                   |
| 11<br>12<br>13<br>14       | JPC-JOINT RESEARCH CENTRE: EUROPEAN COMMISSION  REGIONE CAMPANIA  PANNON EGYETEM  UNIVERSITA DEGLI STUDI DI MILANO  ZALA MEGYEI ONKORWANYZATA        | Belgium  Italy  Hungary  Italy  Hungary          |
| 11<br>12<br>13<br>14<br>15 | JPC-JOINT RESEARCH CENTRE: EUROPEAN COMMISSION  REGIONE CAMPANIA  PANNON EGYETEM  UNIVERSITA DEGLI STUDI DI MILANO  ZALA MEGYEI ONKORWANYZATA  CMAST | Belgium  Italy  Hungary  Italy  Hungary  Belgium |



- > Deterministic central engines, integrating crop growth and water balance;
- > Stronger modular structure, with basic routines easy to change (e.g. evapotranspiration, water balance) or easy to integrate with new routines and all clearly connected;
- Possibility to switch the different modules on/off, in accordance with the required application (e.g. soil erosion, soil water quality, salinization risk);
- Facilities for extensive **validation** (on the ground or through remote sensing);
- ➤ Large use of datacube facilities (rasdaman) and modelling using HPC approaches (GPU, COMPS);
- > Ease in creating / managing different scenarios (what if modelling);
- Assimilation of new remote-sensing data;
- Open Source Web GIS;
- > Web-based Geospatial Decision Support Systems abilities.



Each tool: specific territories/ specific policies/ specific user

Some examples from LANDSUPPORT

### Some conclusions

We showed that if we think bigger... connecting datacubes-modelling-GUI in (**dynamic**) geoSpatial Decision Support Systems (S-DSS) we can indeed support sustainable land management.

### S-DSS must be:

- based on the concept of soil/landscape multifunctionality;
- ii. potentially adapted to the need of each end-user (action at the local scale);
- iii. enabling "what if" modelling.
- iv. Then we do not to provide "solutions" but "options".
- v. Local communities awareness on soil/landscape conservation/sustainable management;
- vi. enabling to incorporate **bottom-up contributions to governance**;
- vii. user friendly (complexity is embedded);

But all this has a high cost ....

we (scientists, technical assistants, landscape planners and managers, stakeholders, farmers) must abandon some of our certainties (our approaches) and reschedule part of our work!



...otherwise we never meet!

Needless to add; the challenge is very difficult but powerful... if you are interested, you could contribute to this adventure!